The status of Research on Screening for Lung Cancer

Anthony B. Miller
Professor Emeritus, Department
of Public Health Sciences,
University of Toronto,
Canada

Background

A series of observational studies and randomized screening trials have found no benefit from screening for lung cancer with chest X-ray and sputum cytology

Cette présentation a été effectuée le 26 octobre 2006, au cours du Symposium "La santé publique et le dépistage du cancer : espoirs et réalités" dans le cadre des Journées annuelles de santé publique (JASP) 2006. L'ensemble des présentations est disponible sur le site Web des JASP, à l'adresse http://www.inspq.qc.ca/jasp.

Reasons for uncertainty about lung screening

- Previous screening trials of Chest X-ray and sputum cytology were small and of low power
- New technology (low dose CT scanning) raises hope for screening benefit
- "Single arm" studies suggest good cancer detection but cannot confirm mortality reduction
- CT seems to preferentially detect adenocarcinomas (peripheral lesions)

Mayo Lung Project (Marcus et al, 2000)

Recruitment: Nov. 1971 to July 1976

Initial follow up, cases and deaths, to July 1, 1983

Follow-up for lung cancers postscreen for 1-5 years

Extended follow-up for deaths to December 31, 1996

Mayo Lung Project (Marcus et al, 2000)

Allocation:		Intervention	<u>Usual Care</u>
Lung cancer	mortality	y:	
to July 1,	1983	3.2/1000py	3.0/1000py
to Dec.31	1996	4.4/1000py	3.9/1000py
Other cause	mortality	<i>y</i> :	
to Dec.31	, 1996	28.0/1000py	27.8/1000py

Mayo Lung Project (Marcus et al, 2000)

Allocation: <u>Intervention</u> <u>Usual Care</u>

Lung cancers diagnosed 206 160

Possible explanations for the difference:

> [Bias] Balance confirmed

➤ Lead time Follow-up extended

Overdiagnosis

Mayo Lung Project (Marcus et al, 2000)

Allocation:	Intervention	<u>Usual Care</u>
Lung cancers diagnosed	206	160
Death from lung cancer	133 (65%)	119 (74%)
Death from other causes	s 57 (28%)	37 (23%)
Alive	16 (8%)	4 (3%)

Mayo Lung Project (Marcus et al, 2000)

A.11.		
Allocation:	<u>Intervention</u>	<u>Usual Care</u>
Lung canc <mark>ers diagnosed</mark>	206	160
Death from lung cancer	133 (65%)	119 (74%)
Death from other causes	57 (28%)	37 (23%)
Alive	16 (8%)	4 (3%)
"Cured"	73 (35%)	41 (26%)

Mayo Lung Project (Marcus et al, 2000)

Allocation:	Intervention	Usual Care
Lung cancers diagnosed	206	160
Death from lung cancer	133 (65%)	119 (74%)
Death from other causes	57 (28%)	37 (23%)
Alive	16 (8%)	4 (3%)
Cured	41 (20%)	41 (26%)
Overdiagnosis	32 (16%)	0 (0%)

Why single arm studies (e.g. ELCAP) cannot provide evidence on efficacy

- Case detection is not equivalent to benefit
- > There is no inbuilt comparison group
- Overdiagnosis confounds attempts to use prior experience as a basis of comparison

The ideal lung screening trial

- Individual randomization with informed consent
- Multicentre, with mechanisms to ensure standardized application of screening and therapy
- > Efficient data collection and quality control
- Endpoint: death from lung cancer (mortality) confirmed by a death review committee
- Monitoring of emerging results by independent committee

The New Lung screening Trials

- PLCO
- NLST
- Europe CT trial (NELSON)

PLCO screening trial

- ➤ a large-scale, randomized trial to determine whether screening will reduce the numbers of deaths from cancers of the prostate, lung, colon and ovary.
- these cancers represent 48% of the incident cancer cases and 49% of the cancer deaths in the United States each year

Screening tests used

Prostate:

PSA test and DRE (annual)

Lung:

PA Chest x-ray (annual)

Colon:

Flexible sigmoidoscopy to

60 cm (x 2)

Ovary:

CA 125 blood test and transvaginal ultrasound (annual)

Enrollment in PLCO trial

- The trial involves over 150,000 men and women ages 55 through 74 at 10 study centers across the United States.
- End date for recruitment was September 30, 2000.
- Screening in the trial comes to an end this year
- Follow up of each participant planned for at least 13 years

Power of PLCO trial

- Prostate: 90% power to detect a 20% reduction in prostate cancer mortality
 - Lung: 90% power to detect a 10% reduction in lung cancer mortality.
- Colorectum: 99% power to detect a 20% reduction in colorectal cancer mortality.
- Ovarian cancer: 88% power to detect a 35% reduction in ovarian cancer mortality

NLST screening trial

- Enrollment September 2002-April 2004
- 53,000 men and women age 55-74, with history of heavy smoking, enrolled
- Randomization to Chest X-ray vs. CT screening
- 3 annual screens, completion this year

Conclusions on Lung screening trials

- Screening trials are expensive, but essential to evaluate efficacy of lung screening
- The NLST trial accrual is complete, a European trial is beginning
- The trials should have adequate power to detect mortality reduction about 5 years after the intake is completed
- There is no other (easy and cheap) way to evaluate screening